The total work done on a particle is equal to the change in its kinetic energy. This is applicable

  • A

    Always

  • B

    Only if the conservative forces are acting on it

  • C

    Only in inertial frames

  • D

    Only when pseudo forces are absent

Similar Questions

A body moving with speed $v$ in space explodes into two piece of masses in the ratio $1 : 3.$ If the smaller piece comes to rest, the speed of the other piece is

A wooden block of mass $M$  is suspended by a cord and is at rest. A bullet of mass $m,$ moving with a velocity $v$ passes through the block and comes out with a velocity $v/2$  in the same direction. If there is no loss in kinetic energy, then upto what height the block will rise

The potential energy of a body of mass $m$ is:
                      $U = ax + by$
Where $x$ and $y$ are position co-ordinates of the particle. The acceleration of the particle is

A body of mass $1\, kg$ is thrown upwards with a velocity $20\, m/s$. It momentarily comes to rest after attaining a height of $18\, m$. How much energy is lost due to air friction ............. $\mathrm{J}$  $(g = 10\, m/s^2)$

A bomb of mass $9\, kg$ explodes into two pieces of masses $3\, kg$ and $6\, kg$. The velocity of mass $3\, kg$ is $16\, m/s$. The $KE$ of mass $6\, kg$ (in joule) is