The total work done on a particle is equal to the change in its kinetic energy. This is applicable
Always
Only if the conservative forces are acting on it
Only in inertial frames
Only when pseudo forces are absent
A body moving with speed $v$ in space explodes into two piece of masses in the ratio $1 : 3.$ If the smaller piece comes to rest, the speed of the other piece is
A wooden block of mass $M$ is suspended by a cord and is at rest. A bullet of mass $m,$ moving with a velocity $v$ passes through the block and comes out with a velocity $v/2$ in the same direction. If there is no loss in kinetic energy, then upto what height the block will rise
The potential energy of a body of mass $m$ is:
$U = ax + by$
Where $x$ and $y$ are position co-ordinates of the particle. The acceleration of the particle is
A body of mass $1\, kg$ is thrown upwards with a velocity $20\, m/s$. It momentarily comes to rest after attaining a height of $18\, m$. How much energy is lost due to air friction ............. $\mathrm{J}$ $(g = 10\, m/s^2)$
A bomb of mass $9\, kg$ explodes into two pieces of masses $3\, kg$ and $6\, kg$. The velocity of mass $3\, kg$ is $16\, m/s$. The $KE$ of mass $6\, kg$ (in joule) is